ARText
Fibroids & Infertility
It is a great privilege for me to pen down this message for the Sixth E-bulletin of IFS-ARTexT on the subject of “Fibroids and infertility”. Fibroids plays a more controversial role than previously thought in determining whether the embryo will implant or not. This common challenge in ART practice needs to be further simplified and understood.

With this new edition of the ARText, we have tried to answer questions about the etiologies, symptoms and also discuss available strategies to improve the ART prognosis in women with myomas. I am sure this bulletin will immensely benefit you all.

Team ARText sincerely hopes to bring out such teaching material for you regularly in future too. It would not only help to disseminate scientific and ethical subject related content but also constantly update everyone with new researches and developments across the world.

We would also like to place record our truthful thanks to Cadila Healthcare Ltd, for helping us in this publication and of course I promise that there is no conflict of interest at any level.

Wish you a happy reading and yes don’t forget to file this issue.

Dr Pankaj Talwar
SECRETARY GENERAL IFS
Editor - ARText

This is an honour for me to write best wishes message for this E-bulletin of IFS-ARTexT. We have always believed in spreading awareness about the common issues in ART and tried to gather and present the evidence that will undoubtedly help both the clinicians and the patients. We intend to cover common day-to-day challenges in clinical ART and thus we bring out E-bulletin named ARTexT every month. The aim is to simplify the complex issues in clinical ART and present before you in concise manner. I am sure that you would appreciate and learn from this academic pursuit of the IFS. In this issue we would be covering “fibroids” which is still an enigma. This manual may help you find the required answers for the queries related to this topic.

The bulletin is penned in three parts. Part 1 deals with the basics of fibroids. Part 2 deals with the frequently asked questions debatable issues concerning ART and the disease and Part 3 would cover at length the current guidelines and recommendations pertaining to myomas and infertility.
Fibroids are the most common reproductive tract tumors that can present major quality of life problems for a large fraction of women. Controversies still perplex patients and clinicians dealing with fibroids and subfertility, especially its impact on ART outcomes.

This comprehensive review aims to explore all aspects of fibroids ranging from etio-pathogenesis to controversies in its clinical impact on fertility along with a birds eye view of all treatment options.

We hope you all have an enjoyable read.
Index

<table>
<thead>
<tr>
<th>Sr No</th>
<th>Topic</th>
<th>PageNo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Part - 1 Understanding Fibroids</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Introduction</td>
<td>7</td>
</tr>
<tr>
<td>II</td>
<td>Pathogenesis</td>
<td>7</td>
</tr>
<tr>
<td>III</td>
<td>Aetiology</td>
<td>7</td>
</tr>
<tr>
<td>IV</td>
<td>Risk factors</td>
<td>9</td>
</tr>
<tr>
<td>V</td>
<td>Classification</td>
<td>11</td>
</tr>
<tr>
<td>VI</td>
<td>Symptoms</td>
<td>12</td>
</tr>
<tr>
<td>VII</td>
<td>Diagnosis</td>
<td>13</td>
</tr>
<tr>
<td>VIII</td>
<td>Differential Diagnosis</td>
<td>16</td>
</tr>
<tr>
<td>IX</td>
<td>Treatment</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Part - 2 Frequently Asked Questions</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>What potential mechanisms are involved in small intra mural fibroids affecting fertility?</td>
<td>24</td>
</tr>
<tr>
<td>II</td>
<td>What type of fibroids affect fertility?</td>
<td>24</td>
</tr>
<tr>
<td>III</td>
<td>What is impact of small non-cavity distorting intramural fibroids on ART?</td>
<td>24</td>
</tr>
<tr>
<td>IV</td>
<td>Is myomectomy recommended before IVF for non-cavity distorting intramural fibroids?</td>
<td>25</td>
</tr>
<tr>
<td>V</td>
<td>What complications can occur in pregnancy due to fibroids?</td>
<td>25</td>
</tr>
<tr>
<td>VI</td>
<td>What is the role of Ulipristal in management of fibroids?</td>
<td>25</td>
</tr>
<tr>
<td>VII</td>
<td>What are the endometrial changes associated with PRM agents?</td>
<td>26</td>
</tr>
<tr>
<td>VIII</td>
<td>Is there a new oral antagonist that can be used for treatment of fibroids instead of the injection?</td>
<td>26</td>
</tr>
<tr>
<td>IX</td>
<td>Are there any potential disadvantages of pre-operative GnRh agonist use especially when myomectomy is planned?</td>
<td>26</td>
</tr>
<tr>
<td>X</td>
<td>What is the STEP-W submucosal fibroid classification system?</td>
<td>27</td>
</tr>
<tr>
<td>XI</td>
<td>What is the current opinion regarding power morcellation?</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Part - 3 International Guidelines</td>
<td></td>
</tr>
<tr>
<td>XII</td>
<td>International Guidelines</td>
<td>33</td>
</tr>
</tbody>
</table>
Part - 1
Fibroids & Infertility
Introduction

Uterine leiomyomas (ULs), or uterine fibroids, are the most common reproductive tract tumor in women that are steroid hormone responsive, benign monoclonal tumours of the smooth muscle compartment (myometrium) of the uterus.

Although found elsewhere in the body, leiomyomas most frequently occur in the myometrium. Uterine leiomyomas are commonly referred to as myomas, fibromyomas, or “fibroids” because of their firm, fibrous character and high content of collagen.

It is estimated that up to 77% of all women will develop UL in their lifetime and 15 to 30% of these women suffer from substantial symptoms, including pelvic discomfort, dysmenorrhea, menorrhagia, anemia, urinary incontinence, recurrent pregnancy loss, preterm labor, and in some cases infertility. *(McWilliams MM et al)*

Pathogenesis

At least two distinct components contribute to leiomyoma development:

- Transformation of normal myocytes into abnormal myocytes, in most instances through somatic mutations
- Growth of abnormal myocytes into clinically apparent tumours

The first process appears to be quite common, in view of the high prevalence of microscopic myomas. **Myometrial and leiomyoma stem cells** have been identified that transform and grow into leiomyomas under the influence of hormones.

(Cramer et al 1990, Hashimoto et al 1995)

Aetiology

Steroid Hormones

It is believed that sex steroids promote development of leiomyomas by stimulating inappropriate expression of growth factors. **Estrogen and progesterone** act as physiologic regulators of gene expression by activating nuclear receptors that are themselves transcription factors. In this way estrogen and progesterone play a key role in regulating genes that direct cell growth.

Assay for estrogen and progesterone receptors in myomas show the concentration to be about ten times the concentration in normal myometrium. Local uterine tissue concentrations of hormones and hormone receptors differ between UL and healthy myometrial tissue. **ULs have higher concentrations of estradiol, aromatase, progesterone receptor (PR), and estrogen receptor-α (ER-α).** Increased expression of ER-α and PR is independent of tumour size, can be heterogeneous within tumours of one patient, and is consistent throughout all the menstrual cycle phases. *(Stewart et al 2001, Parker et al 2007)*

However, it is **progesterone that influences the proliferation of leiomyoma far more than estrogen.** a strong support for progesterone involvement in UL growth comes from anti-progestin therapies. The anti-progestine drugs, such as RU-486, Proellex (CDB4124), Ulipristal acetate (CDB2914), and Mifepristone, cause regression of UL tumor size and symptoms as well as a decrease in ECM formation in UL. The selective PR modulator, Asoprisnil, is also used as a short-term effective treatment for UL tumor symptoms and size. *(Kim JJ et al 2013)*

Low circulating 25-hydroxyvitamin D among African American women has been associated with higher incidence of UL. Hence, supplementation of vitamin D₃ has been suggested as a potential long-term therapeutic option for UL prevention and treatment *(Baird et al 2013)*
Risk factors

Vikhlyaeva and colleagues reported that fibroids were 2.2 times more frequent in first-degree relatives within families in which there were two or more family members with fibroids. (Vikhlyaeva et al 1995)

Table 1: Factors that affect the risk of fibroids

<table>
<thead>
<tr>
<th>Decreased Risk</th>
<th>Increased Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Increased Parity</td>
<td>• African race</td>
</tr>
<tr>
<td>• Late Menarche (>16yrs)</td>
<td>• Age > 40yrs</td>
</tr>
<tr>
<td>• Long -acting progestin only pills</td>
<td>• Nulliparous</td>
</tr>
<tr>
<td>• Green vegetables (0.5-fold decreased risk) and fruit (especially citrus fruit)</td>
<td>• Early menarche (< 10yrs)</td>
</tr>
<tr>
<td>• Smoking may decrease risk possibly through inhibition of aromatase</td>
<td>• Obesity</td>
</tr>
<tr>
<td></td>
<td>• Familial predisposition</td>
</tr>
<tr>
<td></td>
<td>• Environmental exposures such as phthalates, polychlorinated biphenyl, and bisphenol A</td>
</tr>
<tr>
<td></td>
<td>• Beef and other reds meats (1.7-fold) or ham (1.3-fold increased relative risk)</td>
</tr>
<tr>
<td></td>
<td>• Vitamin D Deficiency</td>
</tr>
<tr>
<td></td>
<td>• Increases in Glycemic index</td>
</tr>
<tr>
<td></td>
<td>• Alcohol especially beer intake</td>
</tr>
</tbody>
</table>

(AU Chiaffarino et al 1999, McWilliams MM et al 2017)

Description and Histologic Variants

Uterine leiomyomas (UL) are usually spherical masses of tissue that can vary from a few millimeters to many centimeters in diameter. They are characterized by increased proliferation of disordered smooth muscle cells, altered extracellular matrix (ECM) deposition, and enhanced responsiveness to sex steroid hormones.

Type I Sub-mucus fibroid

Cytogenetic Karyotypic Abnormalities

Karyotypic abnormalities occur in 40 to 50% of ULs, and tumors from the same uterus often show different chromosomal changes. The most common abnormalities are translocations on chromosome 12; deletion on chromosomes 3q and 7q; trisomy 12; and rearrangements on chromosomes 6, 10, and 13. (Bulun SE et al 2010)

Recently, research on a somatic mutation (c.131G > A) in the mediator complex subunit 12 (MED12) has gained attention, as this is an important contributor to UL etiology. Mutations in exon 2 of MED12 are present specifically in approximately 70% of ULs, and not in surrounding myometrial tissue. (Mäkinen N et al 2011)

Cell Signalling Pathways

The PI3K/AKT-mTOR pathway has been identified as one of the most upregulated signaling pathways in UL, based on evidence from protein and transcriptional profiling of human UL, as well as in the Eker rat animal model. In addition, there is evidence that PI3K and mTOR are necessary for estrogen dependent cell growth in UL and myometrial cell cultures. (Crabtree JS et al 2009)

Studies by Varghese et al indicated that the loss of tumor suppressor NRSF/REST and the ensuing expression of GPR10, a neuron-specific G-protein-coupled receptor, activates PI3K/AKT-mTOR pathway in UL (see Fig. 1). (Varghese BV et al 2013)

Targeting of the PI3K/AKT-mTOR pathway as a potential future therapeutic option for UL is currently being explored by some laboratories. The AKT inhibitor, MK-2206, shows promise in the laboratory in limiting UL growth and increasing cell death. However, side effects of rash, diarrhoea, fatigue, and mucositis in patients treated with MK-2206 are common due to the pervasive extent of AKT signalling in normal physiology. These side effects may limit the use of AKT inhibitor therapies for UL treatment. (Lara PN Jr et al 2015)

Figure 1. Molecular pathways that promote uterine leiomyoma pathogenesis. (Varghese BV et al 2013)
Risk factors

Vikhlyaeva and colleagues reported that fibroids were 2.2 times more frequent in first-degree relatives within families in which there were two or more family members with fibroids. (Vikhlyaeva et al 1995)

Table 1: Factors that affect the risk of fibroids

<table>
<thead>
<tr>
<th>Decreased Risk</th>
<th>Increased Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Increased Parity</td>
<td>• African race</td>
</tr>
<tr>
<td>• Late Menarche (>16yrs)</td>
<td>• Age > 40yrs</td>
</tr>
<tr>
<td>• Long-acting progestin only pills</td>
<td>• Nulliparous</td>
</tr>
<tr>
<td>• Green vegetables (0.5-fold decreased risk) and fruit (especially citrus fruit)</td>
<td>• Early menarche (<10yrs)</td>
</tr>
<tr>
<td>• Smoking may decrease risk possibly through inhibition of aromatase</td>
<td>• Obesity</td>
</tr>
<tr>
<td></td>
<td>• Familial predisposition</td>
</tr>
<tr>
<td></td>
<td>• Environmental exposures such as phthalates, polychlorinated biphenyl, and bisphenol A</td>
</tr>
<tr>
<td></td>
<td>• Beef and other reds meats (1.7-fold) or ham (1.3-fold increased relative risk)</td>
</tr>
<tr>
<td></td>
<td>• Vitamin D Deficiency</td>
</tr>
<tr>
<td></td>
<td>• Increases in Glycemic index</td>
</tr>
<tr>
<td></td>
<td>• Alcohol especially beer intake</td>
</tr>
</tbody>
</table>

(AU Chiaffarino et al 1999, McWilliams MM et al 2017)

Description and Histologic Variants

Uterine leiomyomas (UL) are usually spherical masses of tissue that can vary from a few millimeters to many centimeters in diameter.

They are characterized by increased proliferation of disordered smooth muscle cells, altered extracellular matrix (ECM) deposition, and enhanced responsiveness to sex steroid hormones.
Definition of Benign versus Malignant variants

Leiomyoma variants are classified as benign or malignant based upon histologic features. Gross characteristics may suggest that a lesion is benign or malignant, but do not confirm a diagnosis. While some variants include lesions with extra-uterine extension or spread, this does not automatically confer a diagnosis of sarcoma or malignant neoplasm if the histology is benign-appearing.

On the other hand, some of the variants have histologic findings that make it difficult to define them as benign or malignant (eg, smooth muscle tumors of uncertain malignant potential).

- **Benign Smooth Muscle Neoplasms** (ie, leiomyomas of the usual histologic type or “Garden-Variety” leiomyomas) are defined as follows:
 - Low mitotic index (<5 mitoses per 10 high-power fields [HPF])
 - No cytologic atypia
 - No cell necrosis (apart from bland degeneration due to tumor ischemia)
 - Spindle-shaped cells that are uniform in size and shape
 - No intravascular component
 - Well-circumscribed mass

- **Smooth Muscle Tumors** are primarily designated as Malignant according to the presence and extent of three histologic characteristics:
 - Abundant mitoses (≥10 per 10 HPF, depending on other characteristics)
 - Prominent nuclear atypia
 - Areas of coagulative tumor cell necrosis in a “geographic” (like islands on a map) fashion, so-called “Tumor Cell Necrosis”

(Quade BJ et al 2009)

The distinction of leiomyosarcoma from other lesions based on various complex combinations of these features was proposed based upon a large clinic-pathological series by Bell et all and is shown in the following table.

Table 2: Classification of problematic uterine smooth muscle tumors based on pathologic features

<table>
<thead>
<tr>
<th>Group</th>
<th>MI (Per10HPF)</th>
<th>Atypia</th>
<th>Coagulative tumor cell necrosis</th>
<th>Designation</th>
<th>Metastatic or recurrent disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>≥5 to <20</td>
<td>None or mild</td>
<td>None</td>
<td>Leiomysarcoma</td>
<td>1/89</td>
</tr>
<tr>
<td>IIA</td>
<td><10</td>
<td>Diffuse, moderate or severe</td>
<td>None</td>
<td>Atypical leiomyoma with low risk percent or recurrence</td>
<td>2/46</td>
</tr>
<tr>
<td>IIB</td>
<td>≥10</td>
<td>Diffuse, moderate or severe</td>
<td>None</td>
<td>Leiomysarcoma</td>
<td>4/10</td>
</tr>
<tr>
<td>III</td>
<td><20</td>
<td>Diffuse, moderate to severe</td>
<td>Present</td>
<td>Leiomysarcoma</td>
<td>19/33</td>
</tr>
<tr>
<td>IVA</td>
<td><10</td>
<td>None to mild</td>
<td>Present</td>
<td>Smooth muscle tumor or low malignant potential, limited experience</td>
<td>1/4</td>
</tr>
<tr>
<td>IVB</td>
<td>≥10</td>
<td>None to mild</td>
<td>Present</td>
<td>Leiomysarcoma</td>
<td>3/4</td>
</tr>
<tr>
<td>V</td>
<td>≥1 to ≥20</td>
<td>Multifocal, moderate to severe</td>
<td>None</td>
<td>Atypical leiomyoma, limited experience</td>
<td>0/5</td>
</tr>
</tbody>
</table>

MI : mitotic index : HPF : high power field
Classification

Figure 2- ESGE/FIGO PALM-COEIN Classification.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Coagulopathy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyp</td>
<td>Ovulatory dysfunction</td>
</tr>
<tr>
<td>Adenomyosis</td>
<td>Endometrial</td>
</tr>
<tr>
<td>Leiomyoma</td>
<td>Iatrogenic</td>
</tr>
<tr>
<td>Malignancy & hyperplasia</td>
<td>Not yet classified</td>
</tr>
</tbody>
</table>

Leiomyoma subclassification system

<table>
<thead>
<tr>
<th>Submucosal</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Pedunculated intracavitory</td>
</tr>
<tr>
<td>1</td>
<td><50% intramural</td>
</tr>
<tr>
<td>2</td>
<td>≥50% intramural</td>
</tr>
</tbody>
</table>

By convention, the first refers to the relationship with the endometrium, while the second refers to the relationship to the serosa. One example below:

2-5 submucosal & subserosal, each with less than half the diameters in the endometrial & peritoneal cavities, respectively.

(Munro MG et al 2011)

Figure 3

Submucosal leiomyoma position: European Society of Hysteroscopy classification

Baggish, MS, Valle, RF, Guedj, H. Hysteroscopy:

Symptoms

- Heavy or prolonged menstrual bleeding
- Bulk-related symptoms, such as pelvic pressure and pain
- Reproductive dysfunction (ie, infertility or obstetric complications)

Abnormal Uterine Bleeding (AUB) - Among symptomatic women with uterine fibroids, abnormal uterine bleeding (AUB) and menstrual cramps are the most common symptoms occurring in about 26 to 29 percent of all women. African American women reported higher rates at 37 to 42 percent. *(Stewart EA et al 2013)*

The presence and degree of uterine bleeding (AUB) are determined, in large part, by the location of the fibroid; size is of secondary importance.

1. **Submucosal myomas** that protrude into the uterine cavity (eg, types 0 and 1) are most frequently related to significant heavy menstrual bleeding. *(Wegienka G et al 2003)*

2. **Intramural myomas** are also commonly associated with heavy or prolonged menstrual bleeding, but **subserosal** fibroids are not considered a major risk for heavy menstrual bleeding.

3. **Cervical fibroids** that are close to the endo-cervical canal may be related to AUB

Bulk-related symptoms - The myomatous uterus is enlarged and irregularly shaped and can cause specific symptoms due to pressure from myomas at particular locations. These symptoms and findings include pelvic pain or pressure, urinary tract or bowel obstruction, or venous compression.

Fibroids associated with **hydronephrosis** were larger with an average largest fibroid of 6cm and a uterine size of 18 weeks. *(Fletcher HM et al 2013)*

Fibroid Degeneration or Torsion - Infrequently, fibroids cause acute pain from breaking down of the fibroid tissue (eg, carneous or red degeneration) or torsion of a pedunculated tumor.

Fibroid degeneration typically results in pelvic pain and may be associated with a low-grade fever, uterine tenderness on palpation, elevated white blood cell count, or peritoneal signs. The discomfort resulting from degenerating fibroids is self-limited, lasting from days to a few weeks, and usually responds to nonsteroidal anti-inflammatory drugs.

In cases where the etiology of pain is unclear, pelvic MRI with gadolinium can be useful to make the diagnosis of degeneration since regions of degeneration within fibroids do not have enhancement following contrast administration. *(Laughlin SK et al 2011)*

Fibroids, Infertility and ART - Controversies ...

Although there is a significant proportion of couples with unexplained infertility and a well-known common prevalence of uterine fibroids in reproductive-aged women, it has been unclear whether non-cavity-distorting fibroids contribute to an inability to conceive or negatively impact pregnancy. Thus, couples should complete a full infertility evaluation before addressing the role of leiomyomas in their infertility.

Submucosal ULs also lead to lower pregnancy, implantation, and delivery rates in women undergoing IVF. There is evidence of cross talk from UL to adjacent endometrial cells that can lead to decreased endometrial receptivity. *(Cook H et al 2010)*

Eldar-Geva et al found that implantation rates were lower for women with intramural and submucous fibroids, even if node deformity of the uterine cavity existed. The investigators speculate that the presence of intramural or sub-mucous fibroids can cause endometrial changes or changes in vascularization through secretion of growth or angiogenic factors, through changes in the surrounding myometrial contractility, or through mechanical pressure. The presence of sub-serosal myomas had no effect on implantation rates. (Eldar-Geva T et al 1998)

Hart and colleagues studied a similar cohort of women undergoing IVF with intramural fibroids less than 5 cm in size, (n=112) compared with control women with no fibroids (n=322). In this study, pregnancy, implantation and ongoing pregnancy rates were reduced significantly to 23.3, 11.9 and 15.1%, respectively, compared with 34.1, 20.2 and 28.3%, respectively, in the control group. After controlling for age and number of embryos transferred, they calculated a 50% decrease in ongoing pregnancy rate with an intramural fibroid that was up to 5 cm in diameter (OR: 0.46; CI: 0.24-0.88). (Hart R et al 2001)

Styer et al. analysed the association of non-cavity-distorting uterine fibroids and pregnancy outcomes after ovarian stimulation-intrauterine insemination (OS-IUI) in couples with unexplained infertility in a recent prospective, randomized, multicenter clinical trial (AMIGOS) and found no differences were observed in conception and live birth rates in women with non-cavity-distorting fibroids and those without fibroids. However, found an increased rate of pregnancy loss in African American women with fibroids and thus raised the question of whether there are race-specific pregnancy outcomes associated with non-cavity-distorting fibroids after conception with OS-IUI?

Hence, for women with intramural fibroids that do not distort the uterine cavity, other sources of infertility should be addressed prior to a myomectomy. (Styer AK et al 2017)

Diagnosis

The clinical diagnosis of uterine leiomyomas is made based upon a detailed history, pelvic examination and pelvic ultrasound findings consistent with a uterine leiomyoma. Characteristic symptoms further support the clinical diagnosis, although many women are asymptomatic. A definitive diagnosis by pathology evaluation is not obtained in all cases but should be pursued if there is reason to be suspicious that the uterine mass may not be a fibroid, but rather may be a uterine pre-cancer or cancer.

Pelvic ultrasound is the imaging study of choice for uterine leiomyomas, based on the ability to visualize genital tract structures and cost-effectiveness. Ultrasound is typically performed in all patients, and then other studies are ordered depending on the clinical indications.

A good 3D/4D vaginal ultrasound 3D is also useful for the exact localization of the fibroid and precisely estimates the relationship between sub-mucus fibroid and endometrial cavity. Benacerraf et al demonstrated that the 3D coronal view was useful in more accurately determining the specific location of fibroids (i.e., submucous vs intramural) in 24% of patients using the coronal view.

(Benacerraf BR et al 2008)
Vascular density, ischemic necrosis, and histologic cellular activity score have been found to be statistically significantly associated with some 3D power Doppler ultrasound indices.

Minsart et al found a high histologic cellular activity score, combining hyper-cellularity, a fibrosclerosis rate less than 25% and positive Ki-67 staining, to be statistically related in multivariate analyses to high 3D power Doppler VI in spherical samples and vascularization flow index (VFI). (Minsart AF et al 2012)

If there is an intra-cavitary leiomyoma (submucosal or intramural that protrudes into the uterine cavity), and if the percent of the fibroid that is within the endometrial cavity is not clearly ascertained
(and could alter care) then saline infusion sonography or hysteroscopy may be used to evaluate the uterine cavity.

Transvaginal ultrasound has high sensitivity (95 to 100 percent) for detecting myomas in uteri less than 10 gestational weeks’ size. (Dueholm M et al 2002)

On imaging, calcification in a fibroid generally implies that it has degenerated. These calcifications can be seen on plain film as “popcorn” calcifications in the pelvis. On ultrasound, the calcifications may appear as clumps or rim-like calcifications within a mass.

Evaluate the cavity

• **Saline Infusion sonography (SonoHysterography)** –

 Saline infusion sonography is an imaging study in which pelvic ultrasound is performed while saline is infused into the uterine cavity. Use of this technique allows identification of submucosal lesions (some of which may not be seen on routine ultrasonography) and intramural myomas that protrude into the cavity and characterizes the extent of protrusion into the endometrial cavity. This is shown in image below:

![Image 3](image)

 (A) Sagittal transvaginal sonogram shows hypoechoic endometrial thickening (arrowheads).
 (B) Sagittal Sonohysterogram shows submucosal fibroid with thin overlying endometrium (cursors).

Sonohysterographic evaluation. AJR Am J Roentgenol 2001; 176:617. Copyright © 2001

• **Hysterosalpingograms (HSG)** can also sometimes show the distortion of the endometrial cavity but are best reserved for the woman needing assessment of fallopian tube patency for fertility.

• **Hysteroscopy** - Hysteroscopy is useful not only for visualizing the endometrial cavity but also carrying out hysteroscopic resection of a submucosal fibroid if previous ultrasound has already confirmed size and proximity to the endometrium. However, when the fibroid abuts the endometrium or protrudes into the myometrium, the depth of penetration cannot be ascertained hysteroscopically. Additionally, hysteroscopy less accurately predicts the size of the myoma compared with ultrasound and sonohysterography. (Cicinelli E et al 1995)

Additional Tests

• Magnetic resonance imaging (MRI) may be used if ultrasound findings are not sufficient for surgical planning or if the diagnosis is uncertain, that is, if there is a suspicion of uterine sarcoma or adenomyosis. Due to the expense of this modality, its use is best reserved for procedural planning for complicated procedures. IV Gadolinium based contrast is usually not required, however when
administered fibroids enhance later than healthy myometrium.

However a study by Dueholm et al comparing transvaginal ultrasound with MRI, reports a sensitivity and specificity of 100% and 91%, respectively, for MRI, which is currently considered to be the most accurate imaging modality for the diagnosis and characterization of intramural and submucous fibroids. Unfortunately, few studies use MRI preoperatively for diagnosis, thus leading to potential underreporting of intra-cavitary involvement. (Dueholm M et al 2001)

On MRI one third of fibroids usually have a hyperintense rim on T2-weighted images (as demonstrated in the image below) as a result of dilated veins, lymphatics, or edema. Data suggest that less stiff fibroids appear lighter on T2-weighted MRI, while stiffer fibroids are darker on T2-weighted images. (Jondal DE et al 2017)

Image 4

For women with type 3 through 6 uterine fibroids, an MRI can help the surgeon plan for laparoscopic myomectomy to know the expected depth into the myometrium. It can also be useful before uterine artery embolization since imaging patterns predict uterine artery embolization outcome. (Vedantham S et al 2002)

- Computed tomography (CT) has little clinical utility in delineating the position of fibroids relative to the endometrium or myometrium. Although Fibroid calcifications may be more visible on CT scans than on conventional radiographs because of the superior contrast differentiation achieved with CT scanning. (Bradley LD et al 2000)

- Fibroids that are thought to be causing urinary tract obstruction, a renal ultrasound is advisable to assess for hydronephrosis.

- In certain cases of Broad ligament or Cervical fibroids an IVP pre-operatively helps with localisation of the ureters in relation to the fibroid.

Differential Diagnosis

The differential diagnosis of uterine leiomyomas includes other conditions that cause uterine enlargement, abnormal uterine bleeding (AUB), pelvic pain, or infertility. It is important to note that leiomyomas are a common condition, and other coexisting conditions may be the etiology of the presenting symptoms.
The differential diagnosis of an enlarged uterus includes both benign and malignant conditions:

Myometrial lesions:
- Benign leiomyoma.
- Adenomyosis (diffuse infiltration of the myometrium) or adenomyoma.
- Leiomyoma variant.
- Leiomyosarcoma.
- Metastatic disease - This is very rarely the cause of an enlarged uterus and typically from another reproductive tract primary; these lesions are likely to be myometrial but may invade the endometrium.

Endometrial lesions:
- Endometrial polyp - These tend to be small and are unlikely to cause an enlarged uterus.
- Endometrial carcinoma (may invade into the myometrium) or hyperplasia.
- Carcinosarcoma - Considered an epithelial neoplasm.
- Endometrial stromal sarcoma (mimics endometrium but invades the myometrium).
- Pregnancy
- Hematometra (blood within the uterine cavity, usually following an intrauterine procedure, eg, dilation and curettage)

Treatment
Relief of symptoms (eg, abnormal uterine bleeding, pain, pressure) is the major goal in management of women with significant symptoms The type and timing of any intervention should be individualized, based upon factors such as:
 - Type and severity of symptoms
 - Size of the myoma(s)
 - Location of the myoma(s)
 - Patient age
 - Reproductive plans and obstetrical history

Prophylactic therapy to avoid potential future complications from myomas or their treatment is not recommended because we don’t have reliable predictors of progression.

Data suggest medical therapy provides adequate symptom relief in some women, primarily in situations where bleeding is the dominant or only symptom. In general, 75 percent of women get some improvement over one year of therapy, but long-term failure rates are high.

A systematic review by Marjoribanks et al observed that in trials where women were randomly assigned to oral medical therapy, almost 60 percent had undergone surgery by two years. (Marjoribanks J et al 2006)

Surgery is the mainstay of therapy for leiomyomas and hysterectomy remains the most utilized procedure.
Table 3 - Briefly summarises the various treatment modalities-

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Description</th>
<th>Disadvantage</th>
<th>Advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expectant management</td>
<td>About 3-7% of untreated fibroids can regress over 6 mths - 3 years in premenopausal women. If symptoms appear then evaluate accordingly (Vilos Ga et al 2015)</td>
<td>No high quality data regarding follow-up of fibroids in patients who are asymptomatic or who decline medical or surgical treatment.</td>
<td></td>
</tr>
<tr>
<td>Clinical surveillance</td>
<td>for asymptomatic women</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical Therapies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GnRh agonists</td>
<td>Preoperative treatment to decrease size before surgery / ART / peri-menopause</td>
<td>Hypoestrogenism symptoms-including hot flashes, sleep disturbances, vaginal dryness, myalgias and arthralgias, and possible impairment of mood and cognition. Bone loss leading to osteoporosis after long-term use(12+ months) After discontinuation of therapy with GnRH agonists, menses returns in 4-8 weeks and uterine size returns to pre-treatment levels within 4-6 months.</td>
<td>Significant reduction - 35 to 60 percent in uterine size within three months and improvement in anaemia. (Carr BR et al 1993)</td>
</tr>
<tr>
<td>GnRh antagonists</td>
<td>As above</td>
<td>These agents are marketed to at doses used in routine ART and long-acting preparations are not available. Thus, treatment of leiomyomas is cumbersome due to the need for daily injections.</td>
<td>Advantage of antagonists over agonists is the rapid onset of clinical effects without the characteristic initial flare-up observed with GnRH agonist treatment. Daily subcutaneous injection of the GnRH antagonist ganirelix results in a 29% reduction in fibroid volume within 3 weeks (Flierman PA et al 2005)</td>
</tr>
</tbody>
</table>
Fibroids & Infertility

| **Combined COC pills** | **Mechanism of action** is via endometrial atrophy. | **COC related side effects** | **Reduces blood loss from fibroids and particularly helps women with coexisting problems (eg, dysmenorrhea or oligoovulation)**

17% reduction in growth in current users. *(Qin J et al 2013)*

However, this approach should be re assessed if a woman has exacerbation of bulk-related symptoms or does not respond to a three- to six-month trial period |

| **Progestogen only pills** | **Currently no data to discern the effectiveness of progestin-only contraceptive steroids specifically for treatment of leiomyomas, but cause endometrial atrophy** | **Progesterone related side effects** | **They can be considered for treatment of mild symptoms, especially for women who need contraception.**

Evidence from cohort studies that these agents are associated with a decreased risk of leiomyoma formation *(Venkatachalam S et al 2004)* |

| **LNG IUS** | **Mechanism of action is via endometrial atrophy.** | **Presence of intra-cavitary leiomyomas amenable to hysteroscopic resection is a strong relative contraindication to use** | **Study found that women with at least 1 fibroid <5 cm, with <50% of the fibroid in the endometrial cavity (type 2), had a 90% reduction in blood loss and an increase in hemoglobin levels 1 year after insertion of an LNG-IUS** *(Soysal S et al 2005)* |
Selective progesterone receptor modulators (SPRM's)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Effect and Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulipristal Acetate (UPA)</td>
<td>They seem to interrupt angiogenesis and growth signals from progesterone that involves TGF-β signaling causing reduction in the size of the fibroid. Recent MHRA warning for use (Feb 2018) in view of severe liver disease found in some women and advise monthly LFTs. Headaches, Breast Tenderness, Reversible changes occur in endometrium known as PRM-associated endometrial changes (PAECs). Therefore intermittent use is advised. Usually for up to four three-month courses separated by a spontaneous withdrawal menstrual flow or one brought on by norethindrone acetate (Donnez J et al 2014). Decreased blood loss (faster action than GnRh agonists). More than 13 weeks of treatment with oral Ulipristal acetate, 5 mg daily, controlled excessive uterine bleeding in at least 90% of patients and was shown to be non-inferior to leuprolide acetate injected monthly over 3 months. Uterine volume reduction was maintained for at least 6 months after discontinuation of treatment. (Croxtall JD et al 2012)</td>
</tr>
<tr>
<td>Vilaprisan</td>
<td>Stronger antiprogestogenic effect than UPA. Currently phase III trials underway. In the phase 2 ASTEROID-1 study, women with UFs received varying doses (0.5 mg, 1mg, 2mg and 4mg) of vilaprisan or placebo for one 12-week cycle. By the end of the treatment cycle, 87% to 92% of patients achieved amenorrhea. Fibroid volume reductions, decreases in fibroid-related symptoms, and increases in QoL scores were also seen. (Bradley L et al 2016)</td>
</tr>
<tr>
<td>Mifepristone</td>
<td>Not FDA approved for fibroid use. Reversible changes occur in endometrium known as PRM-associated endometrial changes (PAECs). It reduces uterine volume by 26 to 74 percent in women with leiomyomas, comparable to the reduction observed with GnRH agonists. Regrowth occurs slowly following cessation of the drug. (Steinauer J et al 2004)</td>
</tr>
<tr>
<td>Others</td>
<td>Raloxifene: Selective Estrogen Receptor Modulators (SERMs). Unclear efficacy, Risk of Venous thrombosis. A small trial (25 patients) found raloxifene (180 mg/day for three months) inhibited leiomyoma growth in premenopausal women compared to untreated controls, in whom leiomyomas continued to enlarge. (Jirecek S et al 2004)</td>
</tr>
<tr>
<td>Aromatase Inhibitors</td>
<td>Block synthesis of estrogen</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Anti-fibrinolytic agents</td>
<td>Useful in the treatment of idiopathic heavy menstrual bleeding</td>
</tr>
<tr>
<td>Future Treatments</td>
<td>Epigallocatechin gallate (EGCG) - green tea extract</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lanreotide</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgical Management</td>
<td>Hysterectomy (Abdominal/Vaginal/Laparoscopic)</td>
</tr>
</tbody>
</table>
| **Hysteroscopic Myomectomy** | Preserves fertility
It is **optimal** for **Type 0 or 1 Submucosal** fibroids <3 cm where >50% is **intracavitary**
(Camanni M et al 2010)
May be **combined** with **laparoscopic** approach
Faster recovery | Surgery/ anaesthesia risks
May need **2-staged** procedure | **Hysteroscopic resection** of **sub-mucous fibroids**
also can significantly **reduce** heavy menstrual bleeding in 82% of women with sub-mucous pedunculated fibroids (type 0), 86% with sessile fibroids (type 1), and 68% with intramural fibroids (type 2).
(Vercellini P et al 1999) |
|---|---|---|---|
| **Myolysis (Laparoscopic)** | Laparoscopic thermal, radiofrequency, or cryoablation (cryomyolysis) of leiomyoma tissue
Now approved by the US Food and Drug Administration for use
Localized tissue destruction without suturing may **increase** the chance of subsequent adhesion formation or rupture during pregnancy
(Arcangeli S et al 1997) | Intraperitoneal ultrasound diagnosis is used with this technique to optimize detection of fibroids.
In a single randomized trial, radiofrequency ablation resulted in a shorter length of stay and less blood loss.
(Brucker SY et al 2014) |
| **UAE** | Interventional radiological approach to occlude uterine arteries
Robust studies needed regarding fertility outcomes after UAE, thus **caution** in women desiring fertility
Risk of **post-embolization syndrome**
Women with larger uteri and/or more leiomyomas at baseline are at greater risk of failure and re-intervention. | Minimally invasive/ avoids surgery
It is an effective option for women who wish to **preserve their uterus** and are not interested in optimizing future fertility.
It results in **shrinkage** of myomas of approximately 30 to 46 percent
(Gupta JK et al 2006) |
| **MR guided focused ultrasound (MRgFUS)** | In situ destruction by high intensity ultrasound waves
Non-invasive thermos-ablative technique converges multiple waves of ultrasound energy on a small volume of tissue, which leads to its thermal destruction, and can be performed as an **outpatient procedure**
Robust studies needed regarding fertility outcomes after MRgFUS, thus **caution** and detailed counselling in women seeking fertility.
This system is **not indicated** for leiomyomas which are resectable with a hysteroscope, heavily calcified, or when intervening bowel or bladder could be damaged by treatment.
Maximum size of fibroids that can be treated with this method is **uncertain** | Modest symptom relief
Shorter recovery
It appears that MRgFUS results in a **reduction** in myoma volume of approximately 37 to 40 percent.
(Funaki K et al 2009) |
Part - 2
Frequently Asked Questions?
Frequently Asked Questions?

Question 1) What potential mechanisms are involved in small intra mural fibroids affecting fertility?

Answer 1) The mechanisms by which small intramural fibroids exert their adverse effect on the success rate of IVF are unclear but may include:

- Altered myometrial contractility
- Uterine vascular distortion
- Endometrial inflammation, thinning and atrophy
- Exerting an adverse effect on gamete migration
- Alterations in gene expression

(Khalaf Y et al. 2006)

Question 2) What type of fibroids affect fertility?

Answer 2) There are no well-designed studies that provide high-quality data on whether leiomyomas adversely affect pregnancy outcome.

Leiomyomas that **distort the uterine cavity** (sub-mucosal or intramural with an intra-cavitary component) result in **difficulty conceiving a pregnancy** and an **increased risk of miscarriage**. In contrast, **sub-serosal** fibroids do not impact fertility.

A **meta-analysis** of the effect of fibroids on fertility found that **sub-mucous fibroids** causing distortion of the uterine cavity **reduced ongoing pregnancy/live birth rates by 70%** (relative risk 0.32; 95% confidence interval, 0.12-0.85) and that **fibroid resection** increased ongoing pregnancy and live birth rates.

(Pritts EA et al. 2009)

Question 3) What is impact of small non-cavity distorting intramural fibroids on ART?

Answer 3) The role of **intramural** fibroids in infertility is controversial.

A prospective trial of 434 women undergoing IVF/intracytoplasmic sperm injection demonstrated a **significant reduction in clinical and ongoing pregnancy rates** and an increase in early pregnancy loss with **intramural fibroids less than or equal to 5 cm**. However, live birth rates were not reported.

(Hart R et al. 2001)

Khalaf et al. compared pregnancy outcomes in women with (n = 122) and without small intramural fibroids less than or equal to 5 cm (control, n = 322) in a prospective comparative study of women undergoing their first three IVF cycles. Over a 12-month period, the investigators reported a 40%-45% reduction in cumulative live birth rates in women with fibroids.

(Khalaf Y et al. 2006)

A recent retrospective study by Christopoulos G, concluded that **non-cavity distorting** intramural myomas **negatively** influence clinical pregnancy rate and live birth rate when compared to matched controls. The deleterious effect on IVF outcome was **significant** in women with **2 or more myomas** or when **size of myoma is > 3cm**.

The study **did not** reveal any **significant** impact in women with **myoma size < 30mm**.

(Christopoulos G et al. 2017)
Question 4) Is myomectomy recommended before IVF for non-cavity distorting intramural fibroids?

Answer 4) Despite the growing body of evidence in favour of a negative impact of intramural fibroids on IVF/ICSI outcome, it is **unclear whether this impact can be reversed by myomectomy.**

Women with **large sub-serosal or intramural fibroids** have been shown to have **increased pregnancy and delivery rates** and **decreased miscarriage rates after myomectomy.** (Bulletti C et al 2004)

However exposure of women with **small intramural fibroids (<5cm)** to the risks of myomectomy with the **sole aim of improving reproductive performance remains controversial.** (Surrey ES et al 2003)

Gianaroli et al., suggested that patients with **small non cavity distorting intramural fibroids attempting IVF** should be counselled that they **have similar outcome** to those with **no fibroids.** (Gianaroli L et al 2005)

Question 5) What complications can occur in pregnancy due to fibroids?

Answer 5) Most pregnant women with fibroids do **not have any complications** during pregnancy related to the fibroids. However, when complications occur, **painful degeneration is the most common** complication and there also appears to be a **slightly increased** risk of complications such as miscarriage, premature delivery, abnormal fetal position, and placental abruption.

In 10 to 40% of pregnancies with UL present, complications occur and **miscarriage is up to twofold higher in women with symptomatic UL.** In addition, it has been suggested that **sub-mucosal UL may disrupt normal uterine peristaltic movements and contractility,** impeding sperm arrival at the oviducts, embryo movement into the uterus, or causing **increased contractions leading to preterm labor.** (Cook et al, 2010)

Sub-mucosal and retro-placental fibroids and fibroids with **volumes >200 mL (corresponding to 7-8 cm diameter)** are associated with the **highest risk of abruption.** (Rice JP et al 1989)

Question 6) What is the role of Ulipristal in management of fibroids?

Answer 6) Ulipristal acetate is a Progesterone Receptor Modulator (PRM) that is approved outside the United States both for **three months of preoperative therapy and short intermittent courses interrupted by menstruation** (European Conformity [CE mark] and Canadian drug authority).

A randomized trial by Donnez et al included 307 women with menorrhagia and a uterus that was uterus that was ≤16 weeks of gestation size. Participants were assigned to **13 weeks of therapy with either ulipristal acetate (oral, 5 mg or 10 mg per day)** or the **GnRH-agonist leuprolide acetate** (intramuscular, 3.75 mg monthly). **Resolution of menorrhagia** was achieved more quickly in the **ulipristal groups** (approximately six days compared with 30 days for leuprolide). Women treated with ulipristal had a **significantly lower frequency of moderate to severe hot flashes** (in the ulipristal acetate groups, 5 mg: 11 percent; 10 mg: 10 percent versus leuprolide: 40 percent). The **reduction in uterine size was significantly lower** for the **ulipristal groups** (5 mg: 20 percent; 10 mg: 22 percent; leuprolide: 47 percent).

The PEARL Trial III concluded that repeated **3-month UPA courses effectively control bleeding and shrink fibroids in patients with symptomatic fibroids and all endometrial biopsies showed benign histology without hyperplasia.** (Donnez J et al 2014)
In **February 2018** the Medicines & Healthcare products Regulatory Agency (MHRA) advised of **new temporary safety measures for Esmya (ulipristal acetate)** following reports of **serious liver injury** in women using the medicine for uterine fibroids. They advise on **performing liver function tests at least once a month in all women currently taking Esmya** and to **stop Esmya treatment** in any woman who develops **transaminase levels more than 2 times the upper limit of normal**.

(European Medicines Agency for healthcare professionals and the public (9 Feb 2018)

Question 7 What are the endometrial changes associated with PRM agents ?

Answer 7 A unique pattern of endometrial changes has been observed following treatment with PRMs termed **“Progesterone Receptor Modulator-Associated Endometrial Changes” (PAECs)**.

The most common histologic finding observed in women taking PRMs is **cystic glandular dilatation**, with both estrogen and progestin epithelial effects.

Spitz IM et al in their review suggested that in some cases the endometrial histology had been erroneously interpreted as showing hyperplasia whereas true endometrial hyperplasia and atypical hyperplasia was not seen following PRM therapy and **no woman developed endometrial carcinoma**.

(Spitz IM et al 2009)

Question 8 Is there a new oral antagonist that can be used for treatment of fibroids instead of the injection ?

Answer 8 There is a new generation of oral GnRH antagonists in development that are likely to be **more acceptable and appear to be effective and well tolerated**, particularly with add-back estrogen and progestin therapy to mitigate hot flashes. In women with **heavy menstrual bleeding associated with fibroids**, Archer et al recently conducted one of the first randomized trials (n = 271) to evaluate these agents was a dose-finding study that also compared elagolix alone at varying doses with elagolix plus a continuous versus cyclic add-back estrogen and progestin therapy.

Menstrual blood loss (MBL) change from baseline was greater with elagolix alone compared with placebo (range of mean decrease, elagolix: 72 to 98 percent versus placebo, 8 to 41 percent); dose dependent reduction was highest with 300 mg twice daily. MBL reduction was greater with elagolix 300 mg twice daily alone (97 percent) than with 600 mg once daily (89 percent) or elagolix 300 mg twice daily plus add-back therapy (80 to 85 percent). **Hot flush** was the most common adverse effect and was highest with elagolix alone (46 to 63 percent) versus add-back regimens (19 to 27 percent).

(Archer DF et al 2017)

Question 9 Are there any potential disadvantages of pre-operative GnRh agonist use especially when myomectomy is planned ?

Answer 9 Potential disadvantage with 3-4 mths pre-operative use can be **difficult enucleation/ loss of cleavage planes / increase risk of recurrence** due to the reduction of previously small fibroids into surgically undetectable ones.

Other possible concerns are the possibility of **delaying the diagnosis of leiomyosarcoma**, a **greater degree of tumor hyalinization** and the **potential risk of massive hemorrhage** stemming from tumor degeneration.

(Farquhar C et al 2002)
Question 10) What is the STEP-W submucosal fibroid classification system?

Answer 10) The **STEP-W classification** considers size, topography, extension of the fibroid base, depth of fibroid penetration, and the lateral wall involvement.

<table>
<thead>
<tr>
<th>Size (cm)</th>
<th>Topography</th>
<th>Extension of the Base</th>
<th>Penetration</th>
<th>Lateral wall</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td><2</td>
<td>Low</td>
<td><1/3</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>1</td>
<td>>2 to 5</td>
<td>Middle</td>
<td>>1/3 to 2/3</td>
<td><50%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>>5</td>
<td>Upper</td>
<td>>2/3</td>
<td>>50%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Score</th>
<th>Group</th>
<th>Complexity & therapeutic options</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 4</td>
<td>I</td>
<td>Low-complexity hysteroscopic myomectomy</td>
</tr>
<tr>
<td>5 to 6</td>
<td>II</td>
<td>High-complexity hysteroscopic myomectomy, consider two-step hysteroscopic myomectomy</td>
</tr>
<tr>
<td>7 to 9</td>
<td>III</td>
<td>Consider alternatives to the hysteroscopic technique</td>
</tr>
</tbody>
</table>

Stepw: size, topography, extension, penetration, wall: GnRH: gonadotropin-releasing hormone

Each factor is assigned a point value. A **low score of 0 to 4** (low complexity) is associated with **safety and successful** removal of the fibroid in one hysteroscopic setting.

A **score of 5 or 6** is considered **high complexity**, and may require a two-stage hysteroscopic procedure. A score of **7 to 9** is considered **not amenable to treatment hysteroscopically**

(Lasmar RB et al 2011)

Question 11) What is the current opinion regarding power morcellation?

Answer 11) The US FDA and ACOG recommends **caution** and emphasises the importance of **informed written consent** and should **not** be performed in women with **risk factors** or **suspicion** of uterine cancer.

(ACOG Power morcellation and occult malignancy in gynecologic surgery 2014)
References

44. Mäkinen N, Mehine M, Tolvanen J, et al. MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. Science 2011;334(6053):252-255.

Part - 3
International Guidelines
In the infertile population, cumulative pregnancy rates by the laparoscopic and the minilaparotomy approaches are similar, but the **laparoscopic approach** is associated with a quicker recovery, less postoperative pain, and less febrile morbidity. (II-2)

Subserosal fibroids do not appear to have an impact on fertility; the **effect of intramural fibroids remains unclear**. If intramural fibroids do have an impact on fertility, it appears to be small and to be even less significant when the endometrium is not involved. (II-3)

There is **little evidence** on the use of Foley catheters, estrogen, or intrauterine devices for the prevention of intrauterine adhesions following hysteroscopic myomectomy. (II-3)

Because current medical therapy for fibroids is associated with suppression of ovulation, reduction of estrogen production, or disruption of the target action of estrogen or progesterone at the receptor level, and it has the potential to interfere in endometrial development and implantation, there is **no role for medical therapy as a stand-alone treatment for fibroids in the infertile population**. (III)

<table>
<thead>
<tr>
<th>Article</th>
<th>Summary statements</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Management of Uterine Fibroids in Women With Otherwise Unexplained Infertility</td>
<td>In women with otherwise unexplained infertility, submucosal fibroids should be removed in order to improve conception and pregnancy rates. (II-2A)</td>
<td>• In women with infertility, submucosal fibroids should be removed in order to improve conception and pregnancy rates. (II-2A)</td>
</tr>
<tr>
<td></td>
<td>If fibroids are removed abdominally, efforts should be made to use an anterior uterine incision to minimize the formation of postoperative adhesions. (II-2A)</td>
<td>• If fibroids are removed abdominally, efforts should be made to use an anterior uterine incision to minimize the formation of postoperative adhesions. (II-2A)</td>
</tr>
<tr>
<td></td>
<td>Women, fertile or infertile, seeking future pregnancy should not generally be offered uterine artery embolization as a treatment option for uterine fibroids (II-3E)</td>
<td>• Women, fertile or infertile, seeking future pregnancy should not generally be offered uterine artery embolization as a treatment option for uterine fibroids (II-3E)</td>
</tr>
<tr>
<td></td>
<td>In women with infertility, an effort should be made to adequately evaluate and classify fibroids, particularly those impinging on the endometrial cavity, using transvaginal ultrasound, hysteroscopy, hysterosonography, or magnetic resonance imaging (III-A)</td>
<td>• In women with infertility, an effort should be made to adequately evaluate and classify fibroids, particularly those impinging on the endometrial cavity, using transvaginal ultrasound, hysteroscopy, hysterosonography, or magnetic resonance imaging (III-A)</td>
</tr>
<tr>
<td></td>
<td>Widespread use of the laparoscopic approach to myomectomy may be limited by the technical difficulty of this procedure. Patient selection should be individualized based on the number, size, and location of uterine fibroids and the skill of the surgeon. (III-A)</td>
<td>• Widespread use of the laparoscopic approach to myomectomy may be limited by the technical difficulty of this procedure. Patient selection should be individualized based on the number, size, and location of uterine fibroids and the skill of the surgeon. (III-A)</td>
</tr>
</tbody>
</table>
Preoperative assessment of submucosal fibroids is essential to the decision on the best approach for treatment. (I II)

There are lower pregnancy rates, higher miscarriage rates, and more adverse pregnancy outcomes following uterine artery embolization than after myomectomy (II-3). Studies also suggest that uterine artery embolization is associated with loss of ovarian reserve, especially in older patients. (III)

- Preoperative assessment of submucosal fibroids should include, in addition to an assessment of fibroid size and location within the uterine cavity, evaluation of the degree of invasion of the cavity and thickness of residual myometrium to the serosa. A combination of hysteroscopy and transvaginal ultrasound or hysterosonography is the modalities of choice. (III-B)

- Submucosal fibroids are managed hysteroscopically. The fibroid size should be <5 cm, although larger fibroids have been managed hysteroscopically, but repeat procedures are often necessary. (III-B)

- There is fair evidence to recommend against myomectomy in women with intramural fibroids (hysteroscopically confirmed intact endometrium) and otherwise unexplained infertility, regardless of their size. (II-2D) If the patient has no other options, the benefits of myomectomy should be weighed against the risks, and management of intramural fibroids should be individualized. (III-C)

- A hysterosalpingogram is not an appropriate exam to evaluate and classify fibroids. (III-D)

- Removal of subserosal fibroids is not recommended. (III-D)
The Following Recommendations and Conclusions are Based on Good and Consistent Scientific Evidence

Submucous leiomyomas contribute to infertility, and although their removal improves pregnancy rates, the fertility rate remains lower than is the case for women with normal uteri.

Hysteroscopy, infusion sonohysterography (saline solution, gel) and MRI are all highly sensitive and specific for the diagnosis of submucous leiomyomas.

Hysterosalpingography is less sensitive for diagnosing submucous myomas than hysteroscopy, infusion sonohysterography, and MRI, and is much less specific.

Transvaginal ultrasound is less sensitive and less specific for diagnosing submucous myomas than hysteroscopy and infusion sonohysterography.

Endometrial ablation can be an effective therapy for selected women with type 2 leiomyomas and HMB who do not wish to become pregnant in the future.

TheFollowing Recommendations and Conclusions are Based on Limited or Inconsistent Scientific Evidence

Submucous myomas increase the risk of recurrent early pregnancy loss.

The LNG-IUS appears to reduce the incidence of submucous leiomyomas.

If fertility enhancement is not a goal, women with asymptomatic submucous myomas can be watched expectantly.

The impact of leiomyoma ablation techniques on submucous leiomyomas and the overlying and nearby endometrium has not been established.

The role for GnRHa administered for the purpose of reducing operating time, the amount of systemic absorption of distention media, and the risk of incomplete resection of submucous myomas has not been established.

For women desiring future fertility, or who are currently infertile, an abdominal approach to submucous myomectomy should be considered when there are 3 or more submucous myomas or in other circumstances where hysteroscopic myomectomy might be anticipated to damage a large portion of the

| Table B: AAGL Practice Report: Practice Guidelines for the Diagnosis and Management of Submucous Leiomyomas |
|---|---|---|---|
| **Article** | **Level A** | **Level B** | **Level C** |
| The Following Recommendations and Conclusions are Based on Limited or Inconsistent Scientific Evidence | Submucous myomas increase the risk of recurrent early pregnancy loss. | The LNG-IUS appears to reduce the incidence of submucous leiomyomas. | The Following Recommendations and Conclusions are Based Primarily on Consensus and Expert Opinion |
| If fertility enhancement is not a goal, women with asymptomatic submucous myomas can be watched expectantly. | The impact of leiomyoma ablation techniques on submucous leiomyomas and the overlying and nearby endometrium has not been established. | The role for GnRHa administered for the purpose of reducing operating time, the amount of systemic absorption of distention media, and the risk of incomplete resection of submucous myomas has not been established. | |
| The direct source of abnormal uterine bleeding in women with submucous myomas is usually the endometrium itself, a circumstance that allows for the selection of medical therapies aimed at the endometrium or for endometrial destruction, provided fertility is not an issue. | With currently available evidence, embolic and ablative therapies are not appropriate for women with submucous myomas who have current infertility or who wish to conceive in the future. These techniques include UAE and occlusion, as well as leiomyoma ablation with radiofrequency electricity, cryotherapy, and MRg-FUS. | |
| When planning the appropriate surgical approach, the surgeon should personally evaluate the images from any uterine imaging studies. If hysteroscopic myomectomy is to be performed with a monopolar or bipolar resectoscope or any other surgical device, the surgeon should be familiar both with the device and the related fundamentals of electrosurgery or other energy source. | When performing radiofrequency electrosurgical procedures with |

The Following Recommendations and Conclusions are Based on Limited or Inconsistent Scientific Evidence

Submucous leiomyomas increase the risk of recurrent early pregnancy loss.

The LNG-IUS appears to reduce the incidence of submucous leiomyomas.

If fertility enhancement is not a goal, women with asymptomatic submucous myomas can be watched expectantly.

The impact of leiomyoma ablation techniques on submucous leiomyomas and the overlying and nearby endometrium has not been established.

The role for GnRHa administered for the purpose of reducing operating time, the amount of systemic absorption of distention media, and the risk of incomplete resection of submucous myomas has not been established.

For women desiring future fertility, or who are currently infertile, an abdominal approach to submucous myomectomy should be considered when there are 3 or more submucous myomas or in other circumstances where hysteroscopic myomectomy might be anticipated to damage a large portion of the

The Following Recommendations and Conclusions are Based Primarily on Consensus and Expert Opinion

The direct source of abnormal uterine bleeding in women with submucous myomas is usually the endometrium itself, a circumstance that allows for the selection of medical therapies aimed at the endometrium or for endometrial destruction, provided fertility is not an issue.

With currently available evidence, embolic and ablative therapies are not appropriate for women with submucous myomas who have current infertility or who wish to conceive in the future. These techniques include UAE and occlusion, as well as leiomyoma ablation with radiofrequency electricity, cryotherapy, and MRg-FUS.

When planning the appropriate surgical approach, the surgeon should personally evaluate the images from any uterine imaging studies. If hysteroscopic myomectomy is to be performed with a monopolar or bipolar resectoscope or any other surgical device, the surgeon should be familiar both with the device and the related fundamentals of electrosurgery or other energy source. When performing radiofrequency electrosurgical procedures with
Fibroids & Infertility

monopolar instruments, it is mandatory to
use electrolyte-free fluid distension media
such as 5% mannitol, 5% glycine, or 3%
sorbitol. Provided the use of careful fluid
monitoring and adherence to protocols
designed to terminate procedures if
unacceptable thresholds are met, there
is currently available evidence to
suggest that one hysteroscopic fluid
distention medium is safer than the
other. However, 5% mannitol is isosmolar
and is an osmotic diuretic, features
that make it theoretically safer than
other electrolyte-free options for uterine
distention.

Provided adequate training, available
equipment, and appropriate analgesia or
anesthesia, small submucous myomas
can be removed in the office setting.

There may be a role for concomitant
laparoscopy or ultrasound when
hysteroscopic myomectomy is performed
on deep type 2 submucous myomas.

Second-look hysteroscopy may be
effective for postoperative intrauterine
adhesions and thereby could reduce the
long-term risk of adhesion formation.
There is fair evidence that myomectomy does not impair reproductive outcomes (clinical pregnancy rates, live birth rates) following ART.

There is fair evidence that hysteroscopic myomectomy for submucosal fibroids improve clinical pregnancy rates.

Heterogeneous study designs, inconsistent nomenclature, continuous nature of leiomyomas size and location, and insufficient patient recruitment significantly limit the interpretation of results from existing studies that evaluate the impact of fibroids on the likelihood of achieving pregnancy and maintenance of pregnancy.

Summary Statements

<table>
<thead>
<tr>
<th>Article</th>
<th>Grade B</th>
<th>Grade C</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is fair evidence that myomectomy does not impair reproductive outcomes (clinical pregnancy rates, live birth rates) following ART.</td>
<td>There is insufficient evidence to conclude that myomas reduce the likelihood of achieving pregnancy with or without fertility treatment. There is insufficient evidence to determine that a specific myoma size, number, or location (excluding submucosal myomas or intramural myomas impacting the endometrial cavity contour) is associated with a reduced likelihood of achieving pregnancy or an increased risk of early pregnancy loss.</td>
<td>There is insufficient evidence to conclude that hysteroscopic myomectomy reduces the likelihood of early pregnancy loss in women with infertility and a submucosal fibroid.</td>
</tr>
<tr>
<td>In asymptomatic women with cavity-distorting myomas (intramural with submucosal component or submucosal), myomectomy (open or laparoscopic or hysteroscopic) may be considered to improve pregnancy rates.</td>
<td>Myomectomy is generally not advised to improve pregnancy outcomes in asymptomatic infertile women with cavity-distorting myomas. However, myomectomy may be reasonable in some circumstances, including but not limited to severe distortion of pelvic architecture complicating access to the ovaries for oocyte retrieval.</td>
<td></td>
</tr>
<tr>
<td>Myomectomy is generally not advised to improve pregnancy outcomes in asymptomatic infertile women with cavity-distorting myomas. However, myomectomy may be reasonable in some circumstances, including but not limited to severe distortion of pelvic architecture complicating access to the ovaries for oocyte retrieval.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recommendations

The strength of the recommendations was evaluated as follows:

- **Grade A**: There is good evidence to support the recommendations, either for or against.
- **Grade B**: There is fair evidence to support the recommendations, either for or against.
- **Grade C**: There is insufficient evidence to support the recommendations, either for or against.

The level of the evidence was evaluated using the following grading system and is assigned for each reference in the bibliography:

- **Level I**: Systematic review of randomized controlled trials (RCTs), RCTs
- **Level II**: Systematic review of a combination of RCTs, controlled trials without randomization, and cohort studies
- **Level III**: Observational studies, case series, case reports, letters, non-systematic reviews, opinions based on clinical experience, and reports of expert committees
Menotrophin
Letrozole 2.5 mg Tablets
Filgrastim 300 µg/ml single dose pre-filled syringe

Contact:
Prof Pankaj Talwar
9810690063,
pankaj_1310@yahoo.co.in